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The macrocyclic tetraamido-A7 ligand class used here is unique. 
In spite of the voluminous literature of macrocyclic polyamines 
and Schiff bases, only one example, prior to our work, of a complex 
of a macrocyclic tetraamido-Ar ligand (a cyclic tetrapeptide) has 
been reported (as part of a classic study of copper(III) chemistry 
by Margerum et al."'12). That copper(III) complex proved 
susceptible to degradation via chemistry involving hydrogen 
substituents /3 to the amido-7Vdonor."b The ligand class shown 
in Figure 1 possesses no ̂ -hydrogens and can be systematically 
varied at the "a" through " j" positions. We are currently studying 
the reactions and physical properties of these unprecedented oxo 
complexes and the broader chemistry of a family of complexes 
of the tetraamide ligands. 
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Addition of nucleophiles to carbonyl groups constitutes one of 
the most fundamental reactions in organic synthesis. Mukaiyama 
found acetals to serve as carbonyl equivalents in the Lewis acid 
promoted reaction with enol silyl ethers.1 In this respect, ace­
talization works not to protect (or deactivate) but to activate 
carbonyls. It would be of great synthetic value if we could control 
at will reactivities of carbonyls through acetalization. As an 
example along this line, Noyori et al. reported that trimethylsilyl 
triflate (TMSOT0 was milder than the usual Lewis acids to 
preferentially promote the reaction of acetals with enol silyl ethers 
in competing reactions with a carbonyl compound.2 Reetz,3 and 
Yamamoto4 later, disclosed that an aldehyde underwent selective 
protection through titanium or aluminum amide mediated 
aminoacetalization, leaving a coexisting ketone intact, and sub­
sequently the ketone was alkylated. Luche also utilized the same 
concept for the selective NaBH4 reduction of ketones in the 
presence of an aldehyde which was preferentially deactivated as 
a hydrated form with the aid of CeCl3.

5 Now we have found 
that dibutyltin bis(triflate) (1) catalyzes the reaction with a variety 
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Table I. Crossover Aldol Reaction between Acetals of Ketone and 
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"Reaction conditions: 7:8:2 = 1:1:1, dichloromethane, -78 0C, 2 h. 
'Determined on the basis of GLC analysis. cThe amount employed is 
given in parentheses. 

of silyl nucleophiles in a quite unusual manner leading to syn­
thetically promising differentiation of carbonyl groups. Namely, 
in contrast to smooth reaction with aldehydes, no reaction takes 
place with ketones. However, through acetalization, ketones are 
activated and are capable of undergoing addition of silyl nu­
cleophiles while aldehydes are deactivated, giving rise to inert 
acetals. This finding has allowed ketones to react in preference 
to an aldehyde in a one-pot manner. 

Exposure of octanal (3) to the enol silyl ether 2a in the presence 
of I6-7 at -78 0C afforded the aldol product 5a in 80% yield after 
column chromatographic isolation while no reaction occurred with 
2-hexanone (4) (Scheme I),8 in accord with the known relative 
reactivities of aldehydes and ketones. Note, however, that 
TMSOTf failed to activate either type of carbonyl under similar 
conditions.2 In this sense, 1 is more active than the silicon ana­
logue. 

Next, acetals were subjected to the same reaction (Scheme I). 
The ketone acetal 7 reacted smoothly while the aldehyde acetal 
8 reacted quite sluggishly. Other enol ethers gave similar results 
(Table I). Of more importance is the fact that no such distinct 
discrimination was observed with other Lewis acids such as TiCl4,

9 

SnCl4, AlCl3, TMSOTf,10 trityl perchlorate (TrC104)," 
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Table II. Crossover Reaction of Acetals of Ketone and Aldehyde 
with Various Silyl Nucleophiles" 
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"Reaction conditions: ll:12:R3SiNu:l = 1:1:1:0.05, dichloro-
methane, -78 0 C, 2 h. * Determined on the basis of GLC analysis. 
Isolated yields of the mixtures of 13 and 14 after column chromatog­
raphy are given in parentheses. 'Five hours. ' 'Temperature-10 0C. 
'Three hours. 

SnCl2-TMSCl,12 and CF3SO3H.13'14 Apparently, 1 can perceive 
a delicate difference between two kinds of acetals. In this sense, 
1 is more selective than the other Lewis acids. Consequently, the 
reactivities of the ketone and the aldehyde were completely re­
versed through acetalization. 

The synthetic potential of this procedure is demonstrated by 
the successful employment of other silyl nucleophiles (Table II). 

Finally, a novel preferential one-pot transformation of ketones 
in the presence of aldehydes was achieved. An aldehyde-ketone 
mixture (each 1 equiv) was converted into the corresponding acetal 
mixture by treating with trimethylmethoxysilane (7 equiv) using 
1 as a catalyst at -30 0C for 2 h in dichloromethane.15 Then, 
a silyl nucleophile was added to this solution under the conditions 
shown in Scheme II. GLC analyses exhibited the selective 
formation of the ketone adducts. This methodology not only 
provides a conceptually new mode of carbonyl differentiation but 
also meets versatile synthetic demands due to recent extensive 
developments of silicon-based nucleophile reagents. 

The success of the present reaction is ascribed to the unique 
catalytic activity of 1, which serves for acetalization of carbonyls 
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TMSI. 
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Noyori, R. Tetrahedron Lett. 1980, 21, 1357. 

and the subsequent preferential addition of the silyl nucleophiles 
to the ketone acetals in a one-pot manner. Probably, the mild 
reactivity of 1 is primarily responsible for the soft activation of 
ketone acetals, leaving cationically less reactive aldehyde acetals 
unchanged.16 The mildness of 1 as compared with TMSOTf is 
rather surprising in view of the generally accepted criterion for 
the Lewis acidity of organotin and -silicon compounds. The 
difference is attributable to the reduced oxygenophilicity of tin 
in comparison with silicon.17 
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The formation of C-C bonds via radical reactions has witnessed 
a renaissance recently, particularly in intramolcular cyclization 
processes leading to the preparation of complex natural products." 
While C-C multiple bonds have generally served as the radical 
acceptor in these cyclization approaches, a significant limitation 
of this methodology is that the cyclization process often results 
in a decrease in the functional complexity of the substrate. Re­
cently the addition of carbon radicals to carbonyl groups was 
reported, which should allow for the preparation of cycloalkanols.2 

Another feature of the radical cyclization involving carbonyl 
groups is that the resulting alkoxy radicals may be useful for 
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